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Abstract. Using a set of new odderon states, we calculate their contribution to the diffractive ηc photo-
and electroproduction process. Compared to previous simple 3-gluon exchange calculations we find an
enhancement of about one order of magnitude in the cross section. The t-dependence of the cross section
exhibits a dip structure in the small t region.

1 Introduction

The existence of the Odderon [1], the partner of the
Pomeron which is odd under charge conjugation C, is an
important prediction of perturbative QCD. In the lead-
ing order, the Odderon appears as a bound state of three
reggeized gluons. Its experimental observation is a strong
challenge for the experimentalists. Promising scattering
processes where the exchange of the Odderon may be seen
include the difference between the p − p and p − p̄ cross-
sections and the diffractive production of particles with a
C-odd exchange, such as photo- and electroproduction of
pseudoscalar mesons (PS). From the theoretical point of
view, some of the latter processes are of particular inter-
est, namely those where the presence of a large momentum
scale provides some justifications for the use of pertur-
bative QCD. This includes, in particular, the diffractive
production of charmed pseudoscalar mesons, for example
the ηc. Correspondingly, a large amount of literature has
been devoted to this class of diffractive processes. For large
photon virtualities Q2, for heavy mass PS mesons (such as
ηc), and for large momentum transfers the relevant impact
factors for the transition γ(γ∗) →PS have been be calcu-
lated perturbatively [2]. As to the Odderon exchange, first
studies have used the simplest form, the exchange of three
noninteracting gluons in a C = −1 state. Another line of
Odderon investigations, pursued by the Heidelberg group,
uses a non-perturbative model for the Odderon, based on
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the idea of a “stochastic QCD vacuum” [3]. Numerical
estimates for the cross sections turn out to be very differ-
ent in these two approaches: the nonperturbative Odderon
models tend to give substantially larger cross sections [3,
2,4]. Evidently, to guide the experimental search for sig-
natures of the Odderon we have to clarify these discrep-
ancies. In this paper we follow the perturbative approach
and make use of the recently discoverd new Odderon so-
lution.

The perturbative QCD Odderon has a rather long his-
tory. After several variational studies [5,6] a first ana-
lytic solution to the Odderon equation was constructed
by Janik and Wosiek [7] and verified by Braun et al [8].
It belongs to the lowest non-zero eigenvalue of the confor-
mal integral of motion, Q3. This solution has an intercept
slightly below unity and, most important, vanishes if two
of the three gluons are at the same point. This property
leads to the disappointing result that this solution cannot
couple to the perturbative γ →PS vertex and therefore is
irrelevant for photo and electroproduction of PS mesons.
It may, however, play its role in purely hadronic processes,
such as pp or pp̄ scattering. Recently a new solution for a
bound state of three reggeized gluons with the Odderon
quantum numbers has been found [9], which is quite dif-
ferent from the previous one. It corresponds to Q3 = 0,
has intercept unity, and, most important, it does couple to
the γ →PS transition vertex. The structure of the wave
function of this solution is rather peculiar, so that one may
expect substantial changes compared to the exchange of
three noninteracting gluons. The purpose of this paper
is to perform an analytic and numerical study of the ex-
change of this new odderon solution for the diffractive ηc
photo- and electroproduction. We follow the approach of
[2], by replacing the three noninteracting gluons by the
new Odderon state. As the main results, our cross sec-
tions are an order of magnitude larger than those of [2,
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4]; also, the t-dependence of our cross section exhibits an
interesting dip structure which is not present in the case
of noninteracting gluons.

2 The perturbative QCD Odderon
which couples to γ-PS transition

Let us first briefly recapitulate the main properties of the
new odderon solution. For details we refer to [9]. We re-
mind that this solution has been shown [10] to be a par-
ticular case of a more general class of solutions: in the
large Nc-limit there exist relations between eigenstates of
different number of reggeized gluons, which connect solu-
tions of different symmetry properties, and the Odderon
solution is the simplest case that satisfies these relations.

In momentum space the Odderon wave function Ψ
is constructed from the known Pomeron solutions E(ν,n)

[11], which have the eigenvalues

χ(ν, n)= ᾱs

(
2ψ(1)− ψ

(
1 + |n|

2
+ iν

)

−ψ
(
1 + |n|

2
− iν

))
,

ᾱs =
Ncαs
π
. (1)

One proves that

Ψ (ν,n)(k1,k2,k3) = c(ν, n)
∑
(123)

(k1 + k2)2

k2
1k

2
2

×E(ν,n)(k1 + k2,k3), (2)

indeed satisfies the Odderon equation and has the same
intercept (1), provided the Pomeron wave function is odd
under the interchange of its arguments. This restricts the
values of n to odd numbers. The normalization factor c in
(2) can be chosen in such a way that the Odderon wave
function will have the same norm as the Pomeron function

〈Ψ̃ (ν,n)|Ψ (ν′,n′)〉 = 〈Ẽ(ν,n)|E(ν′,n′)〉 = w(ν, n)δ(ν−ν′)δnn′ ,
(3)

where the w(ν, n) are known [12]. In (3) the scalar product
is defined as the integral of the two wave functions in mo-
mentum space, where the bra-vector has to be amputated
(marked by a tilda). Condition (3) leads to

c(ν, n) =
1

(2π)3/2

√
g2sNc

−3χ(ν, n) . (4)

When including in (2) the colour structure dabc one
should change the normalization by a factor

√
Nc/√

(N2
c − 4)(N2

c − 1).
In order to construct the full Green function we clearly

need to know the complete set of solutions of the Odd-
eron equation. At the moment we only have the symmet-
ric solutions of [7] and the new solutions (2). The former

are orthogonal to the photon impact factor and so irrele-
vant for our problem. At present we do not know if any
other solution exists, apart from (2), which couples to the
γ−PS transition vertex. So our results are strictly speak-
ing restricted to the contribution of the exchange of the
Odderon states with the wave function (2). Normalizing
the Green function to reduce in the small coupling limit
(αs → 0) to

1
k2

1k
2
2k

2
3
δ(k1 − k′

1)δ(k2 − k′
2) ,

and having in mind (3) we find the part of the Green
function corresponding to (2) in the form:

G3(y|k1,k2,k3|k′
1,k

′
2,k

′
3)

=
∑

odd n

∫ +∞

−∞
dνey χ(ν,n)

× (2π)2(ν2 + n2/4)
[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]

×Ψ (ν,n)(k1,k2,k3)Ψ (ν,n)∗
(k′

1,k
′
2,k

′
3) . (5)

3 The BFKL function
in the momentum space

In this section we present the BFKL Pomeron eigenstates
in the momentum representation, which we need in order
to construct the Green’s function in (5). This wave func-
tion is well known in the coordinate space [12] where its
form is dictated by conformal invariance

E(h,h̄)(r10, r20) =
(
r12
r10r20

)h(
r̄12
r̄10r̄20

)h̄

, (6)

where r10 = r1 − r0 etc, h = (1 + n)/2 + iν, h̄ = (1 −
n)/2 + iν, and the standard complex notation for the
two-dimensional vector is used on the right-hand side. By
Fourier transforming to momentum space one finds (see
Appendix A)

Ẽhh̄(k1,k2) = ẼA
hh̄(k1,k2) + Ẽδ

hh̄(k1,k2), (7)

where the first term denotes the analytic contribution, and
the second one stands for the δ-function terms. The ana-
lytic part is given by

ẼA
hh̄(k1,k2) = C

(
X(k1,k2) + (−1)nX(k2,k1)

)
, (8)

where h = (1 + n)/2 + iν and h̄ = (1 − n)/2 + iν are the
conformal weights. The coefficient C is given by

C =
(−i)n
(4π)2

hh̄(1− h)(1− h̄)Γ (1− h)Γ (1− h̄). (9)

The expression forX in complex notation is given in terms
of the hypergeometric functions

X(k1,k2) =
(
k1
2

)h̄−2(
k̄2
2

)h−2

F

(
1− h, 2− h; 2;− k̄1

k̄2

)

×F
(
1− h̄, 2− h̄; 2;−k2

k1

)
. (10)
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The δ-function part is

Ẽδ
hh̄(k1,k2) =

[
δ(2)(k1) + (−1)nδ(2)(k2)

] in
2π

21−h−h̄

×Γ (1− h̄)
Γ (h)

qh̄−1q∗h−1 ,

q = k1 + k2. (11)

Let us note that, when the Pomeron couples to an im-
pact factor of a colourless object, δ-function terms in the
pomeron wave function do not give any contribution. How-
ever in our calculations it turns out that these terms play
an important role.

In order to calculate the couplings of the exchanged
Odderon to the proton and to the γ → ηc impact factors
we need to know the Pomeron wave function E(ν,n) in
momentum space for n = ±1 and around the value ν = 0.
We start with the analytic part; we need to look at (10)
which, for n = 1, reads

X(k1,k2) =
(
k1
2

)iν−2(
k̄2
2

)iν−1

F

(
−iν, 1− iν; 2;− k̄1

k̄2

)

×F
(
1− iν, 2− iν; 2;−k2

k1

)
, (12)

and we perform a Taylor expansion around the point ν =
0. The complicated expression (8) is drastically simplified
at small values of ν. In lowest order it is linear in ν:

EA
1 (k1,k2) =

ν

2π2q

(
1
k1k̄2

− 1
k2k̄1

)
. (13)

This function is odd in the azimuthal angle (i.e. antisym-
metric under ϕ → ϕ + π). So it is orthogonal to the two
impact factors which are azimuthally even. For this rea-
son a non-zero contribution only comes from the terms
quadratic in ν. Omitting those with the same structure as
(13) we find

EA
2 (k1,k2) =

iν2

2π2q

[
1
k2

2
lnk2

1 − 1
k2

1
lnk2

2 +
(

1
k2

1
− 1

k2
2

)

× ln q +
(

1
k̄2k

2
1

− 1
k̄1k

2
2

)
q̄ ln q̄

]
. (14)

The δ-function part is finite for ν → 0:

Eδ
0(k1,k2) =

[
δ(2)(k1)− δ(2)(k2)

] i
2π

1
q
. (15)

The constant C in (9) (for n = 1) becomes:

C =
1

(4π)2
ν(1 + ν2)Γ 2(1− iν). (16)

To construct the Green’s function one has also to consider

χ(ν,±1) = −ν2 2ᾱsζ(3) +O(ν4) (17)

and the ν-dependence in the denominators of the integra-
tion measure in (5):

[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4] = ν2(1 + ν2) . (18)

4 The transition amplitude

We study the process of the diffractive photo- or electro-
production of ηc on the proton: γ∗p → ηcp. It will be as-
sumed that the proton remains intact, although it would
be rather easy to include also its low-lying excitations.
The differential cross-section is given by the formula

dσ

dt
(γ(γ∗) + p→ ηc + p) =

1
16πs2

1
2

2∑
i=1

|Ai|2, (19)

where Ai, i = 1, 2 is the photoproduction amplitude for a
given transverse polarization i of the photon. The electro-
production cross-section can be obtained from (19) in a
trivial manner (see [2]). The photoproduction amplitude
Ai is given by a convolution of the two impact factors,
Φp and Φiγ , for the proton and for the γ → ηc transition,
resp., with the Odderon Green function:

Ai =
s

32
5
6
1
3!

1
(2π)8

〈Φiγ |G3|Φp〉. (20)

We shall assume that the c.m. energy squared, s, is much
greater than the scales in the transition vertex: s 
 Q2,
m2

c , t, t being the four momentum squared carried by the
Odderon. Using the definition of [2], namely x = (m2

ηc
+

Q2)/(s + Q2) and y = log 1/x, we are in the low-x limit
x� 1.

The matrix element on the rhs of (20) involves the in-
tegration over ν coming from the Green function (5). This
integration can be done in the saddle point approximation,
since y 
 1. The leading contribution will obviously come
from the smallest values of |n|, i.e. n = ±1 and small ν,
when the integral acquires a form∫

dνe−ν2β yI(ν), β = 2ᾱsζ(3) (21)

and I(ν) denotes the nonexponential part of the integrand.
Since we expect the dominant contribution to the cross
section to come from the kinematical region where t is not
large, there is one more large momentum scale in the prob-
lem, apart from the energy

√
s, namely,M =

√
Q2 + 4m2

c ,
which provides some basis for the use of perturbation the-
ory. In principle, the position of the saddle point νs de-
pends upon the relation between these two large scales.
However in our kinematical region of small x, M is much
smaller than

√
s, so that νs is close to zero. As a result, we

have to calculate the matrix elements of the two impact
factors with the Odderon wave function with |n| = 1 and
small ν.

The impact factor corresponding to the transition γ →
ηc can be calculated perturbatively. Referring the reader
to the original paper [2] for the details, we only quote the
final result:

Φiγ = b εij
qj
q2


∑

(123)

(k1 + k2 − k3) · q

Q2 + 4m2
c + (k1 + k2 − k3)2

− q2

Q2 + 4m2
c + q2


 (22)
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with q = k1 + k2 + k3 and

b =
16
π
ecg

3
s

1
2
mηcb0. (23)

Here ec = (2/3)e is the electric charge of the charmed
quark, and gs is the strong coupling constant. The con-
stant b0 can be determined from the known radiative
width Γ (ηc → γγ)= 7 KeV:

b0 =
16π3

3e2c

√
πΓ

mηc

. (24)

Following [9] we denote

ϕ(k,k′) =
(k − k′) · (k + k′)

Q2 + 4m2
c + (k − k′)2

. (25)

Using the form (2) of the Odderon wave function one can
show that the convolution of the Odderon wave function
Ψ with the impact factor Φγ for the transition γ → ηc re-
duces to a convolution of the function ϕ and the Pomeron
function E [9]:

〈Φiγ→ηc
|Ψ (ν,n)〉 = bεij qj

q2

1
c(ν, n)

∫
d2kϕ(k, q − k)

×E(ν,n)(k, q − k)

≡ −bεij qj
q2

1
c

1
M

|t|iν i
π
V (ν,n)
γ

( |t|
M2

)
, (26)

where the Pomeron function is given in (7), and we have
rescaled the momenta in the integrand by q =

√|t|.
Note that (26) is sensitive to the δ-function term

present in the Pomeron wave function. In fact in [9] (26)
has been proven by explicitly using the Pomeron wave
function in the coordinate representation, which does con-
tain such terms.

We could have chosen to calculate 〈Φiγ→ηc
|Ψ (ν,n)〉 in a

different way, directly from (2):

〈Φiγ→ηc
|Ψ (ν,n)〉 = 3c

∫
d2lE∗ (ν,n)(l, q − l)g(l), (27)

where function g(l) is defined by

g(l) =
∫
d2k

l2

k2(l − k)2
Φiγ(k, l − k, q − l) , (28)

the factor 3 comes from the symmetry of the impact factor
and k1 = k, k2 = l − k and k3 = q − l.

Now the δ-function terms in E give no contribution.
Indeed, g(0) = 0 because of the l2 factor present in (28),
and g(q) = 0 as the impact factor vanishes for k3 = 0. As
a result, in the calculation of (27), one may freely add or
subtract such δ-function pieces in the Pomeron wave func-
tion [13]. At ν = ±1 and small ν factor c behavies as 1/ν
(see (4) and (17)). Therefore, to find the γ →PS form-
factor in the lowest (first) order in ν one needs to know
the BFKL function E(ν,±1) in the second order if one uses

Fig. 1. Numerical result for the coupling of the Odderon to
the γ∗ → ηc impact factor (defined in (26)), as a function of
the scaled variable x = |t|/(Q2 + 4m2

c)

(27), but only in the zeroth order if one uses (26). One can
show that both ways lead to the same answer. However,
(27) needs numerical computation, and (26) gives the re-
sult in a trivial manner due to the simple structure of the
zeroth order BFKL function (15). At |n| = 1 and ν → 0
we find

V (0,±1)
γ

(
t

M2

)
=

√|t|/M2

1 + |t|/M2 . (29)

In Fig. 1 we show a plot of this function in the region 0 ≤
|t|/M2 ≤ 10. We have verified by numerical computation
that, starting from (27) and using for E∗ (ν,n) only the
analytic part, EA

2 , we get exactly the same answer for
ν → 0.

The proton impact factor is non-perturbative. We use
the parametrization proposed in [2]:

Φp = d
[
F (q, 0, 0)−

3∑
i=1

F (ki, q − ki, 0) + 2F (k1,k2,k3)
]
,

(30)
with

F (k1,k2,k3)

=
2a2

2a2 + (k1 − k2)2 + (k2 − k3)2 + (k3 − k1)2
, (31)

d = 8(2π)2ḡ3 and the scale parameter a = mρ/2. From
the comparison with the two gluon exchange model for
hadronic cross-sections the authors of [2] estimate ḡ2/(4π)
= 1. The impact factor (30) satisfies the basic requirement
that it vanishes when any of the three gluon momenta
goes to zero. The calculation of the scalar product of the
Odderon wave function with the proton impact factor is
more cumbersome, since it amounts to the integration over
the three-gluon phase space. Using the symmetry of the
proton impact factor and the explicit form of the Odderon
wave function (2) one finds

〈Φp|Ψ (ν,n)〉 = 3c d
∫
d2lE∗ (ν,n)(l, q − l)f(l)

= c d
1

(2a2)1/2
|t|−iν (iν

2)∗

2π2 V
(ν,n)
p

( |t|
2a2

)
, (32)
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where

f(l) =
∫
d2k

l2

k2(l − k)2

[
F (q, 0, 0)

−
3∑

j=1

F (kj , q − kj , 0) + 2F (k1,k2,k3)

]
(33)

and, as before, k1 = k, k2 = l − k and k3 = q − l. To ob-
tain the last expression in (32) we have again rescaled the
momenta in the integral with respect to q and extracted
the factor iν2/2π2 having in mind that at small ν the con-
tribution to (32) starts with the second order term of the
BFKL function (14). Note that the integral (33) is infrared
finite, since the square bracket vanishes if any of the gluon
momenta goes to zero. However, individual terms inside
the square bracket are infrared divergent. Clearly, as in
(27), only the analytic part of the Pomeron function EA

contributes to (32).
Let us consider the rhs of (33). Two of the five terms

are simple, since the F functions do not depend on the
integration variable. They give

f1 =
(
F (q, 0, 0)− F (q − l, l, 0)

)∫
d2k

l2

k2(l − k)2

=
(
F (q, 0, 0)− F (q − l, l, 0)

)
2π ln

l2

m2 . (34)

We have introduced here a mass m as an infrared regula-
tor. The two remaining terms in the sum inside the square
brackets in (33) give identical contributions. Their sum is
given by

f2 = −2
3
a2
∫
d2k

l2

k2(l − k)2
1

(k − q/2)2 + ε
, (35)

where ε = 1
12q2 + 1

3a
2. The last term in the sum gives:

f3 =
2
3
a2
∫
d2k

l2

k2(l − k)2
1

(k − l/2)2 + δ
. (36)

where δ = l2−lq+(q2+a2)/3. Both integrals (35) and (36)
thus reduce to a general two-dimensional triangle diagram

I =
∫
d2k

1
(k2 +m2)[(k − l)2 +m2][(k − p)2 + b2]

. (37)

Using the standard Feynman parametrization this integral
can be transformed into an one-dimensional one which,
after separating the infrared divergent contributions, can
be done numerically. Some details about this procedure
are discussed in Appendix B.

The resulting function f(l) = f1 + f2 + f3 is used to
calculate the integral (32). Here only the analytic part,
EA

2 , contributes. The calculation has been done numer-
ically. We present the results for V (0,±1)

p in Fig. 2. One
observes that Vp changes sign at |t| ≈ 0.07 GeV2. As a
consequence, the cross section will vanish at this point.
Of course, this property is literally true only in the limit
of asymptotically large energies where one can neglect the
contributions of all other states ν �= 0 and |n| > 1.

Fig. 2. Numerical results for the coupling of the Odderon to
the proton, defined in (32), as a function of the scaled variable
x = |t|/2a2

Fig. 3. The differential cross sections (in pb / GeV2). The
upper curve refers to Q2 = 0

5 Numerical results and discussion

To find the final cross-sections from (19) and (20), we do
the saddle point integration over ν, then take the square
module of the amplitude (20) and do the sum over the po-
larizations in (19). The latter step provides a factor 1/|t|
(from the prefactors in (22)). The normalization factors
c(ν, n) of the Odderon solution which are contained in the
Green’s function (5) cancel when the scalar product (26)
of the Odderon wave function and the photon impact fac-
tor is computed. Collecting all pieces of our cross section
formula we find

dσ

dt
(γ(γ∗) + p→ ηc + p)

=
24 · 52

37

1
(2π)8

αemα
2
sb

2
0

ζ(3)y
m2

ηc

(Q2 + 4m2
c)2a2

× 1
|t|
∣∣∣V (0,±1)

γ (t)
∣∣∣2 ∣∣∣V (0,±1)

p (t)
∣∣∣2 . (38)

The differential cross sections for the two cases Q2 = 0
and 25 GeV2 and

√
s ≈ 300 GeV are shown in Fig.3. We

have taken αs at the scale m2
c + Q

2 (in [2] at Q2 = 0
the scale was m2

c). Independently of Q2 the cross sections
show a dip at small |t| ≈ 0.07 GeV and a maximum at
|t| ≈ 0.22 GeV (roughly of the order of (mρ/2)2. The
dip comes from the zero present in the Odderon-proton
coupling (Fig. 2). Its origin seems to be related to the
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symmetry properties of the Odderon solution: as it can be
seen from (2), the Odderon wave function is a sum of three
terms, each of which contains an antisymmetric Pomeron
eigenfunction. A similar structure is present in the photon
impact factor (22), whereas the proton impact factor (30)
is completely symmetric. The convolution of the Odderon
wave function with the photon impact factor has no zero
in t, whereas the convolution with the proton leads to such
a zero. Whether this feature is an artifact of the simple
model for the proton impact factor that we have used, or
whether it represents a general property of the Odderon-
proton coupling we do not know. In our calculation, this
dip is present in the leading high energy approximation;
it may be that at finite energies (e.g. at HERA) the dip is
(partially) filled by the exchange of nonleading Odderon
states.

At t = 0 the cross section vanishes, as in the case of
a simple three gluon exchange. As one can see from Fig.
3, this happens at quite small t and cannot be seen in
the figure. A more detailed analysis of the behaviour in
the region of very small t requires, probably, a more ac-
curate evaluation of the ν-integral in the 3-gluon Green’s
function. It would, however, not affect too much the dip
structure or the value of the integrated cross section.

For the integrated cross sections we find 50 pb and 1.3
pb at Q2 = 0 and 25 GeV2, respectively. Compared to the
value of 11 pb predicted for Q2 = 0 with a simple three-
gluon exchange [2] we find an enhancement of about 5
times. For Q2 = 25 GeV2 the differential cross sections in
[2] seem to indicate that one can simply scale the Q2 = 0
cross section by 0.01 and obtain 0.1pb. This implies that
our cross-section is an order of magnitude larger. Note
that compared to the simple three gluon exchange, we
have a (weak) logarithmic suppression with energy. So the
obtained enhancement effect is totally due to the coupling
of our Odderon wave function to the impact factors.

In conclusion, by comparing the exchange of three non-
interacting gluons with the exchange of the new odderon
solution we find that the interaction between the ex-
changed gluons leads to a significant change in the scat-
tering cross section. However, despite this improvement
in accuracy, our numerical estimate of the ηc cross section
still suffers from a few theoretical uncertainties, in par-
ticular due to the Odderon-proton coupling. We believe
that both the structure of the vertex and its overall nor-
malization should be checked more carefully. As a possible
strategy, one might study the exchange of the Odderon in
pp and pp̄ scattering at large t where the use of pertur-
bative QCD can be justified. Using the same model [2],
a comparison with experimental data on the difference of
pp and pp̄ scattering fixes the overall normalization of the
Odderon proton coupling. As to the general momentum
structure of the vertex, the most sensitive test is the t-
dependence in the small-t region: the presence of a dip
would support both the structure of the Odderon-proton
vertex and of the Odderon state used in our calculation.
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Appendix A: A momentum space
representation of the Pomeron wave function
in the non-forward direction

The Fourier transform of the function E(h,h̄) given by (6)
is defined by

Ẽhh̄(k1,k2) =
∫
d2r1

(2π)2
d2r2

(2π)2

(
r12
r1r2

)h(
r∗12
r∗1r

∗
2

)h̄

×ei(k1·r1+k2·r2) . (39)

The non exponential part of the integrand in (39) becomes
constant as |ri| → ∞; i = 1 or 2 and therefore contains
terms proportional to δ2(k1) or δ2(k2). Therefore one ex-
pects to find

Ẽhh̄(k1,k2) = ẼA
hh̄(k1,k2) + Ẽδ

hh̄(k1,k2), (40)

where the first term denotes the analytic contribution and
the second the δ-like one.

We shall at first compute the analytic part of the
Fourier transform. Since we are dealing with a distribu-
tion, it is convenient to consider a new, regularized, object

Ẽ
(reg)
hh̄,h3h̄3

(k1,k2) =
∫
d2r1

(2π)2
d2r2

(2π)2
(r12)

h3

(r1r2)
h

(r∗12)
h̄3

(r∗1r
∗
2)

h̄

×ei(k1·r1+k2·r2) , (41)

with an independent conformal weigth h3 for the r12-
terms. The integral (41) is well defined for �(h+ h̄) < 2,
�(h3+h̄3) > −2 and �(h+h̄−h3−h̄3) > 0. Strictly speak-
ing, the last inequality holds, for example, for the k2 �= 0
case. When k2 = 0 one needs �(h + h̄ − h3 − h̄3) > 2.
In the calculation of the scalar product of the Pomeron
function with test functions which vanishe at the points
k1 = 0 or k2 = 0 we shall, therefore, consider the fol-
lowing prescription: 〈Φ|Ehh̄〉 = limh3→h〈Φ|Ehh̄,h3h̄3

〉 =
〈Φ| limh3→hEhh̄,h3h̄3

〉. This means that we shall be able
to extract the analytic part of (39).

Introducing, for both external gluons of the Pomeron
wave function, the complex variables

r = rx + iry ≡ x+ iy κ = kx − iky
2

r∗ = rx − iry ≡ x− iy κ∗ =
kx + iky

2
, (42)

and remembering that h − h̄ = n and h3 − h̄3 = n3, we
get a double integral in the complex plane:

Ẽ
(reg)
hh̄,h3h̄3

(k1,k2)

=
∫
dCr1d

Cr2

(2π)4
∣∣r21∣∣−h ∣∣r22∣∣−h ∣∣r212∣∣h3

r∗n1

×r∗n2 r∗ −n3
12 ei(κ1r1+κ∗

1r
∗
1+κ2r2+κ∗

2r
∗
2 ) . (43)
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By using the integral representation

x−u =
1
Γ (u)

∫ ∞

0
dα αu−1e−αx (�(x) > 0 , �(u) > 0)

(44)
we arrive at the representation

E
(reg)
hh̄

(κ1, κ2) =
1

Γ 2(h)Γ (−h3)

∫
dCr1d

Cr2

(2π)4
(r∗1r

∗
2)

n

×r∗ −n3
12 ei(κ1r1+κ∗

1r
∗
1+κ2r2+κ∗

2r
∗
2 )

×
∫ ∞

0
dα1dα2dα3 (α1α2)h−1α−h3−1

3

×e−(α1r1r
∗
1+α2r2r

∗
2+α3r12r

∗
12) , (45)

where, in order to fulfill the restrictions in (44), we require

�(h) > 0 , �(h3) < 0 ⇐⇒ n > −1 , n3 < −1 . (46)

The next step is to perform a suitable change of vari-
ables in order to do the spatial integrations. Thanks to
the holomorphic separability of the integrand, the natu-
ral choice would be to use rj and r∗j as independent in-
tegration variables. This can practically be achieved in
the following way: first of all note that the whole inte-
grand, regarded as a function of (x1, y1, x2, y2), is analytic.
Therefore, we can analytically continue to complex values
of, say, y1 and y2, and rotate the respective integration
paths by negative angles. This can be done by putting
y = e−iθw : w ∈ R for both j = 1, 2, and by simul-
taneously rotating the α-integrations in such a way that
α = eiφβ : β ∈ R. The generic exponential in the second
line in (45) becomes

e−αrr∗
= e−α(x2+y2)

= e−βeiφ(x2+e−2iθw2)

= e−βx2eiφ

e−βw2ei(φ−2θ)
, (47)

which does not grow for large x and w provided |φ| ≤
π/2 , |φ− 2θ| ≤ π/2. Choosing the extreme case φ = θ =
π/2 we set y = −iw , α = iβ and perform the change of
variables

ρj = xj + wj , ρ̄j = xj − wj (j = 1, 2) . (48)

A further remark concerns the values of the complex mo-
menta kj : the exponential in the first line in (45) contains
two factors

ei(kxx+kyy) = ei(kxx−ikyw) = eikxxekyw . (49)

In order to have a meaningful integral, the values of the y-
components of the momenta must be imaginary. Hence we
have to introduce a slightly different notation with respect
to (42)

κ =
kx − iky

2
; κ̄ =

kx + iky
2

�= κ∗ ; κ, κ̄ ∈ R (50)

and to consider κ and κ̄ as independent variables. After
this replacement we get

E
(reg)
hh̄

(κ1, κ2; κ̄1, κ̄2)

=
(−i/2)2(2π)−4

Γ 2(h)Γ (−h3)

∫ ∞

−∞
dρ̄1dρ̄2 (ρ̄1ρ̄2)nρ̄ −n3

12 ei(κ̄1ρ̄1+κ̄2ρ̄2)

×i2h−h3

∫ ∞

0
dβ1dβ2dβ3 (β1β2)h−1β−h3−1

3

×
∫ ∞

−∞
dρ1dρ2 e

−i(β1ρ1ρ̄1+β2ρ2ρ̄2+β3ρ12ρ̄12−κ1ρ1−κ2ρ2). (51)

The last integral in the above expression provides two
delta functions constraining(
κ1
κ2

)
=
(
β1 + β3 −β3

−β3 β2 + β3

)(
ρ̄1
ρ̄2

)
⇐⇒(

ρ̄1
ρ̄2

)
=

1
β1β2 + β2β3 + β3β1

(
β2 + β3 β3
β3 β1 + β3

)(
κ1
κ2

)
.

If, for simplicity, we restrict ourselves to positive values
of the κ’s, it is apparent from the second equality in the
above expression that the positivity of the β’s forces the ρ̄-
integrals to contribute only in the positive real half-plane.
At this point we split the ρ̄-integral into two pieces: the
first takes into account the region ρ̄2 < ρ̄1 and the second
the remaining one ρ̄2 > ρ̄1. The first contribution reads

∫ ∞

0
dρ̄1

∫ ρ̄1

0
dρ̄2 (ρ̄1ρ̄2)nρ̄ −n3

12 ei(κ̄1ρ̄1+κ̄2ρ̄2)

×
∫ ∞

0
dβ1dβ2dβ3 (β1β2)h−1β−h3−1

3

×δ(β1ρ̄1 + β3ρ̄12 − κ1)δ(β2ρ̄2 − β3ρ̄12 − κ2). (52)

We can factorize the above expression in the product of
two independent integrals by means of the change of vari-
ables λi = βiρ̄i : i = 1, 2, 3 , (ρ̄3 ≡ ρ̄12), which yields

∫ ∞

0
dρ̄1

∫ ρ̄1

0
dρ̄2 (ρ̄1ρ̄2)n−hρ̄ −n3+h3

12 ei(κ̄1ρ̄1+κ̄2ρ̄2)

×
∫ ∞

0
dλ1dλ2dλ3 (λ1λ2)h−1λ−h3−1

3

×δ(λ1 + λ3 − κ1)δ(λ2 − λ3 − κ2) . (53)

The ρ̄-integrals are easily evaluated by setting x = ρ̄2/ρ̄1,
which casts the inner integral into an integral represen-
tation of the confluent hypergeometric function 1F1 (see,
e.g., (13.2.1) of [14]). The outer integral then becomes a
Laplace transform of the 1F1 times a power (see (7.621.4)
of [15]). The result for the first factor of (53) is (remember
n− h = −h̄)

− ih̄3−2h̄Γ (1− h̄)Γ (1 + h̄3)Γ (2− 2h̄+ h̄3)
Γ (2− h̄+ h̄3)

κ̄ 2h̄−h̄3−2
1

× 2F1

(
1− h̄, 2− 2h̄+ h̄3; 2− h̄+ h̄3;− κ̄2

κ̄1

)
. (54)
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All the restrictions in the above formulas are automati-
cally fulfilled because of (46). The λ-integral in (53) trans-
forms into

κh−h3−1
1 κh−1

2

∫ 1

0
dy y−h3−1(1− y)h−1

(
1 +

κ1

κ2
y

)h−1

,

(55)
which is just an integral representation for the hypergeo-
metric function (see, e.g., (15.3.1) in [14]) and yields

Γ (h)Γ (−h3)
Γ (h− h3)

κh−h3−1
1 κh−1

2

× 2F1

(
−h3, 1− h;h− h3;−κ1

κ2

)
, (56)

provided (46) holds. The second contribution to (51), com-
ing from the region ρ̄2 > ρ̄1, is simply evaluated by the
replacements ρ̄1 ↔ ρ̄2 , β1 ↔ β2, which give∫

ρ̄2>ρ̄1

= (−1)n3

∫
ρ̄2<ρ̄1

(
κ1 ↔ κ2
κ̄1 ↔ κ̄2

)
, (57)

where the parity factor stems from the change of sign of
ρ̄12 in the power with exponent −n3.

To derive the final expression for the Pomeron wave
function in momentum space we have to analytically con-
tinue in the conformal weights to their physical values
h3 = h, h̄3 = h̄ and κy ∈ R ⇐⇒ κ̄ = κ∗. To do this in
(56) we use the relation (see (15.1.2) in [14])

lim
h3→h

1
Γ (h− h3)

2F1

(
−h3, 1− h;h− h3;−κ1

κ2

)

= h(1− h)κ1

κ2
2F1

(
1− h, 2− h; 2;−κ1

κ2

)
. (58)

Putting together (54,56,57,58), and rearranging some Γ -
function factors according to the relation

Γ (h̄)Γ (1− h̄) = (−1)nΓ (h)Γ (1−h) (h− h̄ = n ∈ N ) ,
(59)

we obtain the final expression

EA
hh̄(κ1, κ2) =

h(1− h)Γ (1− h)h̄(1− h̄)Γ (1− h̄)
in (4π)2

×
[
κ∗ h̄−2

1 κh−2
2 2F1

(
1− h, 2− h; 2;−κ1

κ2

)

× 2F1

(
1− h̄, 2− h̄; 2;−κ

∗
2

κ∗
1

)

+(−1)n {1 ↔ 2}
]
. (60)

As a check, we show in the following that the above
function is an eigenfunction of the Casimir operator of
the Möbius group. In the coordinate representation, in
complex notation, one has

(
(r12)2∂1∂2 + h(h− 1)

)( r12
r1r2

)h

= 0, (61)

together with a similar equation in the antiholomorphic
variables. In the momentum representation, these equa-
tions read

(
(∂κ1 − ∂κ2)

2κ1κ2 + h(h− 1)
)
Ehh̄(κ1, κ2) = 0, (62)

and an analogous result holds for its antiholomorphic
counterpart. From the general property of scaling invari-
ance we know that

Ehh̄(κ1, κ2) = κh−2
1 κ∗ h̄−2

1 Ehh̄

(
1,
κ2

κ1

)
, (63)

which is satisfied by (60). Changing the variables κ1 →
p1 , κ2/κ1 → p2 transforms (62) into

((
∂p1 − 1 + p2

p1
∂p2

)2

p21p2 + h(h− 1)

)

×ph−2
1 Ehh̄(1, p2) = 0. (64)

Taking the derivative with respect to p1, we are left with a
differential equation in the p2 variable only. We represent
it in terms of a new variable y = −p2:(

y(1− y)∂2
y + (2− 2(2− h)y)∂y − (h− 1)(h− 2)

)
×Ehh̄(1,−y) = 0. (65)

This is the well known hypergeometric equation. A lin-
early independent set of its solutions is given by the Kum-
mer solutions u1, u4 (formulas (2.9.1) and (2.9.13) in [16]):

u1(y) = 2F1(1− h, 2− h; 2; y) ,

u4(y) = (−y)h−2
2F1

(
1− h, 2− h; 2; 1

y

)
. (66)

These solutions match exactly the structure in (60), which
is therefore a solution of (62).

One can arrive directly at (60) by trying to construct a
single-valued function from the two linearly independent
solutions, and by further fixing the correct normalization.
Note that δ-like terms do not appear in this approach,
since we treat the holomorphic and antiholomorphic mo-
menta as independent variables. The fact that, in princi-
ple, the two sectors do not simply commute (as one can
see considering the two dimensional Poisson equation with
a δ-like source) gives origin to the appearence of the δ-like
terms.

Let us now consider the δ-like contributions. These are
present when ρ1 → ∞ or ρ2 → ∞. Summing these two
contributions one obtains

Ẽδ
hh̄(k1,k2) =

[
δ(2)(k1) + (−1)nδ(2)(k2)

]
× i

n

2π
21−h−h̄Γ (1− h̄)

Γ (h)
qh̄−1q∗h−1 ,

q = k1 + k2. (67)
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Appendix B: Integrals appearing in the
coupling to the nucleon

In order to do the integral (37) we use the Feynman para-
metrization

1
ABC

= 2
∫ 1

0
xdx

∫ 1

0
dy

1
D3 ,

where
D = xyA+ x(1− y)B + (1− x)C.

In our case

D = xy(k2 +m2) + x(1− y)((k − l)2 +m2)
+(1− x)((k − p)2 + b2)

= (k − x(1− y)l − (1− x)p)2 +R,
where

R = x(1− y)l2 + (1− x)(p2 + b2) + xm2

−(x(1− y)l + (1− x)p)2. (68)

Shifting the integration momentum and performing the
momentum integration we find the integral over x and y

I = π
∫ 1

0
xdx

∫ 1

0
dy

1
R2 . (69)

One of the integrations (say, of y) can be done analytically.
We present

R(y) = α+ βy + γy2,

where

α = x(1− x)(l − p)2 + (1− x)b2 + xm2,

β = x(2x− 1)l2 + 2x(1− x)p · l,

γ = −x2l2.

The discriminant ∆ = 4αγ − β2 is negative, so that the
integral over y gives

J =
β + 2γ
∆R(1)

− β

∆R(0)
+

2γ
∆

√−∆
× ln

β + 2γ − √−∆
β + 2γ +

√−∆
β +

√−∆
β − √−∆. (70)

One finds that as x → 0 the integral J behaves like
1/x, so that the integration over x is convergent around
this point. As x → 1, ∆ is finite in the limit m → 0.
However, in the limit x → 1 both R(0) and R(1) behave
as 1/(1−x). So we have a logarithmic divergence at x = 1,
regularized by finite m. Evidently only the first two terms
in (70) lead to this divergence. Therefore we can safely
put m = 0 in the third (logarithmic) term. In the vicinity
of x = 1 we find

J ∼ J0 =
1
l2

(
1

(1− x)(p2 + b2) +m2

+
1

(1− x)[(l − p)2 + b2] +m2

)
. (71)

The final integration over x of this term will give

S =
∫ 1

0
xdxJ0 =

1
l2

[
1

p2 + b2

(
ln

p2 + b2

m2 − 1
)

+
1

(l − p)2 + b2

(
ln

(l − p)2 + b2

m2 − 1
)]
. (72)

One easily checks that the singular contributions coming
from f2 and f3 are cancelled by the singular part of f1
(34), so that the complete result is infrared finite.

To do the numerical calculation we present J = J −
J0+J0 ≡ Jr+J0. The integral over x of the term Jr = J−
J0 converges at x = 1 and can be calculated numerically.
The integral over x of J0 is given by (72).
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